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This paper provides insight to the transient development of density waves generated in
gravity-driven flows of granular materials. The evolution of three modes of dominant
linear instabilities (predicted in a previous work by Wang, Jackson & Sundaresan
1997) is examined by FFT analysis. For the first symmetric density wave (SDW1)
mode, the evolution is governed by the linear instability. The second symmetric
density wave (SDW2) mode undergoes a few stages of temporal development; as a
result, large particle clusters gradually degenerate into a series of smaller clusters in
the flow direction. For the anti-symmetric (ASDW) mode, the corresponding particle
distribution shows significant development in the direction perpendicular to the flow.
The present study indicates that the wall roughness may affect the structure of the
density waves, but these density waves need not be triggered by the wall roughness.
All the three modes of instabilities reported in this work are of inertial nature and
occur only when the particle–particle collisions are significantly inelastic.

1. Introduction
The flow of granular materials is of great interest to scientists and engineers.

The understanding of its dynamics is essential for the better design and operation
of many particle-related industrial processes. Since Bagnold (1954) performed his
pioneering work on the rheological behaviour of granular materials, many researchers
have contributed to this subject. In recent years, several investigations have been
reported in the literature regarding the flow of granular materials, both theoretical
and experimental. Astarita & Ocone (1994) analysed the general characteristics theory
of granular materials using large-scale statistical thermodynamics (LSST). Tan et al.
(1995) used the lattice-Bhatnagar–Gross–Krook (BGK) model to simulate the shear
flow of granular materials. Zhang & Foda (1997) used the Kelvin–Helmholtz type
instability mechanism to study the sliding motion of finite depth of bulk granular
materials.

Extensive work has also been reported on the gravity flow of granular materials
in vertical pipes, channels and hoppers. The methodologies employed in these studies
comprise the continuum approach (Goodman & Cowin 1971; Savage 1979; Nunziato
& Passman 1980; Babić 1993; Wang, Jackson & Sundaresan 1997) and particle
simulations (Sanders & Ackermann 1993; Lee & Leibig 1994).

Base-state solutions of the gravity channel flows have been examined over the past
few decades. Savage (1979) applied a nonlinear theory to two-dimensional gravity
flow of a bulk solid down a rough-walled vertical channel and derived analytical
expressions for the profiles of velocity and volume fraction. In these expressions, the
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solid fraction is maximum at the centreline of the channel and decreases monotonically
towards the wall. Babić (1993) applied the kinetic theory of granular materials to the
problem of vertical channel flow of slightly inelastic, circular disks. The constitutive
relations and boundary conditions used in his study are essentially the same as those
used by Richman & Chou (1988).

In recent years, several studies have been reported on the occurrence of density
waves in granular flows. Sanders & Ackermann (1991, 1993) carried out particle
dynamics simulations for two-dimensional disks in an inclined channel. These flows
produced slugs or regions along the channel characterized by the occurrence of densely
packed groups of flowing disks. The non-uniformity of the flow (the occurrence of
slugs) increased as the disks were made more inelastic.

Lee (1994) studied density waves in the flows of particles through vertical tubes
using both analytical methods and molecular dynamics simulations. The equations
of motion for quasi-one-dimensional systems, combined with Bagnold’s law for the
‘grain-inertia’ regime, were used to describe the time evolution of the density and
velocity fields for narrow tubes. He showed that kinetic waves exist and obtained
the condition for dynamic waves from the model. Peng & Herrmann (1994, 1995)
used lattice-gas automata to model the formation of density waves of granular flow.
They found that the spontaneous density waves propagate through the vertical pipe
with well-defined shapes and velocities. They concluded that both the dissipation and
roughness factors are essential for the emergence of these density waves.

Lee & Leibig (1994) used molecular dynamic simulations and found a density
pattern in a vertical pipe, in which a number of regions with high density are separated
from each other by regions of low density. Bolio & Sinclair (1995) studied the gas
turbulence in the pneumatic conveying of massive particles in vertical tubes. Tan et al.
(1995) applied the lattice-BGK approach to simulate shear flow of granular materials.
They could reproduce and examine the phenomenon of ‘clustering instability’, the
spontaneous agglomeration of particles into dense clusters. Riethmuller et al. (1997)
used a Langvin formulation to study the gravity-driven flow of granular materials
through a rough and narrow vertical pipe. They found that the homogeneous flow
becomes unstable with respect to short-wavelength perturbations. Wang et al. (1997)
investigated the gravity-driven flow of granular materials in a vertical channel. Based
on a continuum rheological model proposed by Lun et al. (1984), they examined the
structure of instabilities and the condition at which a gravity flow loses its stability.
They found three modes of travelling wave instabilities with instabilities occurring
only with the significantly inelastic particle–particle collisions.

In recent years, besides abundant simulation studies, a few experimental studies
on gravity-driven flows have also been carried out. Horikawa et al. (1996) carried
out such experiments through a vertical glass pipe by draining granular materials
from a hopper. They found a few self-organized critical density waves and these are
believed to be due to the back-flow of air. Nakahara & Isoda (1997) investigated
density fluctuations of metallic spheres falling through a vertical glass pipe filled with
liquid. They observed that above a certain packing rate, metallic spheres form slugs
and slowly fall into groups. At the ‘slugging’ transition point, the power spectrum of
the density fluctuation obeys a power law with a negative exponent.

From the previous work reported in the literature, it is confirmed that density waves
do exist under certain conditions in granular material flows. However, the mechanism
for triggering the formation of these waves is not clear, and nor is the temporal
evolution of the flow and density fields if randomly generated perturbations are
added to the system. It is also interesting to examine if the pattern developed has any
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Figure 1. Schematic diagram of the granular flow in a vertical channel showing the velocity
distribution at a given cross-section, g is the specific gravity force.

resemblance to the dominant instability predicted by the linear theory. This work is of
interest as it is the first integration of a set of continuum equations for a rapid flow of
granular material under gravity. Considering collisions to be the main means of mo-
mentum transfer across the channel, the present study examines whether complicated
density waves can indeed be triggered solely by the interactions between particles and
between particle and the wall. All these points are addressed in the present work.

2. Governing equations
The gravity-driven flow of granular materials is confined between two vertical

infinite plates as shown in figure 1. Cartesian coordinates are set up with the origin
in the central plane, the x-axis vertical (parallel to the gravitational acceleration) and
the y-axis normal to the two bounding plates, which are stationary and separated by
a distance ∆. The constant distance between the two plates is maintained by applying
a normal stress N to prevent them from being pushed apart by the impact of the
flowing granular materials. The equations of motion are those used in Wang et al.
(1997), comprising the following continuity, momentum, and pseudo-thermal energy
balance equations:

∂ν

∂t
+ ∇ · (νu) = 0, (1)

ρsν
Du

Dt
= −∇ · σ + ρsνg, (2)

3

2
ρsν

DT

Dt
= −∇ · q − σ:∇u− J. (3)

Here ν denotes the volume fraction of particles; u is the local-average velocity of
the particles; ρs is the density of the particles; σ is the compressive stress tensor; T
is the granular temperature, defined as (1/3)〈u′2〉, where u′ is the magnitude of the
fluctuation about the local mean velocity; q is the flux vector of the pseudo-thermal
energy associated with the fluctuations in particle velocity; and J denotes the rate of
dissipation of this energy, per unit volume, by inelastic collisions between particles.

The constitutive relations for σ can be found elsewhere (Wang et al. 1997; Wang
& Tong 1998; Nott et al. 1999). These relations are based on the earlier work by
Hui et al. (1984), Johnson & Jackson (1987), and Lun et al. (1984). The constitutive
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relations for σ, q, and J have been developed by Lun et al. (1984):

σ = [ρsνT (1 + 4ηνg0)− ηµb∇ · u]I
−1.2

{
2µ

η(2− η)g0

(1 + 8
5
νηg0)[1 + 8

5
η(3η − 2)νg0] + 6

5
µbη

}
S , (4)

q =
−λ
g0

{
(1 + 12

5
ηνg0)[1 + 12

5
η2(4η − 3)νg0] +

64

25π
(41− 33η)(ηνg0)

2

}
∇T

− λ

g0

12

5
η(η − 1)(2η − 1)[1 + 12

5
ηνg0]

d

dν
(ν2g0)

T

ν
∇ν, (5)

J =
48

π0.5
η(1− η)

ρsν
2

d
g0T

1.5, (6)

where S is the deviatoric part of the rate of deformation:

S = 1
2
(∇u+ ∇uT )− 1

3
(∇ · u)I ,

η = (1+ep)/2, where ep is the coefficient of restitution for collisions between particles,
while the two viscosity factors µ and µs, and the thermal conductivity factor λ, are
given by

µ =
5M(T/π)0.5

16d2
, µb =

256µν2g0

5π
, λ =

75M(T/π)0.5

8η(41− 33η)d2
,

where M and d are the mass and diameter of a particle, respectively. For g0, which is
a function of ν, the form used by Johnson & Jackson (1987) is chosen, namely

g0(ν) =
1

1− (ν/νm)1/3
,

where νm is the random close packing solid fraction (= 0.65).
We now restrict attention to the geometry of figure 1 and to motions confined to

the (x, y)-plane. The various dimensionless variables used in this work are defined as
follows:

u∗ = u/(g∆)0.5, T ∗ = ρsT/N, (X,Y ) = (x, y)/∆, τ = t(g/∆)0.5, (7)

where u and v are the x and y components of the velocity, respectively.
Boundary conditions in the present study for the momentum and energy transfer

at the walls are the same as those used by Johnson & Jackson (1987):

t · σ · n = −
(
π
√

3

6νm

)
φ′ρsνg0T

1/2usl , (8)

n · q =

(
π
√

3

6νm

)
φ′ρsνg0T

1/2u2
sl −

(
π
√

3

4νm

)
(1− e2

w)ρsνg0T
3/2, (9)

where φ′ is a specularity factor (which measures the fraction of the momentum of
an incident particle in the direction of slip which is transmitted, on average, to the
wall during collision), t is a unit vector tangent to the wall, in the direction of the
slip velocity, and n is the unit vector normal to the wall. The slip velocity usl is the
velocity of the granular material in contact with the wall and ew is the coefficient of
restitution for particle–wall collisions.

The steady-state solutions for different values of ν̄ and ∆/d have been developed
by Wang (1995) and the results are shown in figure 2 (adiabatic wall condition).
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Figure 2. Base-state solutions of (a) u0, (b) ν0 and (c) T0 for ——–, (ν̄, ∆/d) = (0.15, 33.3);

−−−−, (ν̄, ∆/d) = (0.40, 33.3) and −−−−, (ν̄, ∆/d) = (0.15, 66.6).

The base-state distribution of particles across the width of the channel is found to be
non-uniform and a dense plug develops at the centre with large plate separations. The
volume fraction of solids (ν0) decreases monotonically from the centre of channel to
the walls for the case of adiabatic walls. These characteristics are qualitatively similar
to those predicted by Babić (1993) for gravity-driven flows of smooth, inelastic disks
between parallel bumpy boundaries. The temporal evolution of the unstable modes
is examined by adding small perturbations to a base state (u0, ν0, T0) as follows:

u∗ = u0(Y ) + u′, (10a)

v∗ = v′, (10b)

ν = ν0(Y ) + ν ′, (10c)

T ∗ = T0(Y ) + T ′, (10d)

where

u′ = ue(Y ) exp (Ωτ) exp (iKxX), (11a)

v′ = ve(Y ) exp (Ωτ) exp (iKxX), (11b)

ν ′ = νe(Y ) exp (Ωτ) exp (iKxX), (11c)

T ′ = Te(Y ) exp (Ωτ) exp (iKxX). (11d)
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Here Ω is the complex growth rate and Kx is the dimensionless wavenumber in the
direction of flow. The dimensionless phase velocity is given by −Ωi/Kx.

3. Dominant density-wave instabilities
According to Wang et al. (1997), three types of travelling wave instabilities (namely

SDW1, SDW2 and ASDW) were observed. The classification of different modes of
instabilities is based on the nature of the corresponding density wave. Here, the
terms SDW and ASDW are respectively used to refer the density eigenfunction either
symmetric or antisymmetric about the centreline of the vertical channel. The detailed
structure of each mode will be shown in the subsequent sections. These three modes of
dominant instabilities are characterized by their own intrinsic values of wavenumber
(Kx), growth rate (Ωr) and phase velocity (−Ωi/Kx). In order to maintain consistency
with the literature, the notations for different modes are retained in this paper. The
dimensionless parameters which determine the dominant mode comprise the average
solid fraction (ν̄) and the plate separation (∆/d).

The main objective of this work is to investigate the fate of a density field subjected
to infinitesimal perturbations in the SDW1, SDW2 and ASDW modes. This is tracked
through the transient integration of the macroscopic balance equations and examined
by a fast Fourier transform (FFT) analysis. The density patterns reported in this work
represent the three possible dominant modes in the stability diagram, as observed by
Wang et al. (1997). We have made no attempt to separate the three dominant modes
artificially. Instead, efforts have been made to examine the individual development
of each of the three modes. Although the three density patterns are the dominant
modes at various conditions (solid fraction, plate separation, etc), we cannot rule
out the possibility that the interactions among these modes and the base flow may
be important past the initial linear growth. However, how can one determine the
importance of this aspect without a clear picture of the transient development of each
individual mode? The clarification of this picture is the aim of the present study.

The transient integration of the macroscopic governing equations is performed using
a finite-element method. The length and width of the computational domain are taken
as the characteristic dimensional wavelength (λx) in the flow direction and the plate
separation (∆), respectively. Hence, the computational length for different modes
of instabilities is estimated from their dominant wavenumber Kx (Kx = 2π/(λx/∆)).
The simulation code captures the existing least-stable mode and then perturbs the
base-state flow field accordingly. The parameter values used in the analysis for the
SDW1, SDW2 and ASDW modes are summarized in table 1 and the resulting
temporal evolution of density waves is discussed in the subsequent sections. The key
steps involved in the numerical methods for the eigenvalue and transient analyses
are provided in the Appendix. The finite-element formulation involves a rectangular
grid mesh with a typical 1260 × 1260 matrix equation solved by various standard
mathematical software packages. The spatial and temporal convergence has been
examined by varying the time step and the grid sizes respectively to ensure the
convergence falling within ±0.01%.

The FFT is performed using Matlab and the analysis is carried out with only the
signals of the first two quadrants in the wavenumber space, due to the symmetrical
properties of the FFT (Dudgeon & Mersereau 1984). In all the sections, the results of
an adiabatic-wall condition (ew = 1, usl = 0) are used, except in the last section, where
both the effect of the wall boundary condition and the mechanism of instabilities are
addressed.
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Parameter SDW2 SDW1 ASDW

∆/d dimensionless channel width 33.3 33.3 66.6
ν̄ average solid fraction 0.15 0.40 0.15
Kx dimensionless wavenumber in the flow direction 0.52 0.17 4.6
Uw scale for velocity, Uw = (g∆)1/2(m s−1) 0.77 0.77 1.08
Ts scale for temperature, Ts = N/ρs (m2 s−2) 1447 4304 3110
ρs solid material density (kg m−3) 2980 2980 2980
d particle diameter (m) 0.0018 0.0018 0.0018
ep particle–particle coefficient of restitution 0.95 0.95 0.95

Table 1. Parameter values used in the simulation.

4. Symmetric density wave type 1 (SDW1)
When (ν̄, ∆/d) = (0.40, 33.3), it is found that the eigenfunction has a symmetric

pattern in the density field with two alternating clusters and voids aligning with the
centreline (figure 3a). Wang et al. (1997) identified this mode as SDW1. The base-state
solutions for u0, ν0 and T0 are not uniform in the transverse direction. These exhibit
almost a parabolic distribution with either a concave or convex shape. Hence, it is not
easy to visualize the fluctuation of the density field directly. The base-state solutions
for the adiabatic wall boundary condition are shown in figure 2 (Wang 1995).

The spatial distributions of ν and ν ′ values for the temporal evolution of SDW1
mode are shown in figure 3. At τ = 0+, a small increment in the SDW1 mode
eigenfunction (figure 3a) perturbs the base state. It is obvious that there are two
alternating symmetric clusters or voids of particles aligning beside the centreline.
The dense branches are located roughly at ±25% of the channel width away from
the centreline. In the subsequent stages of transient integration, the amplitude of ν ′
continues to increase, as shown in figure 3(b). When τ reaches 3.0, the voids begin
to split into two or more segments in the flow direction. This amplitude is further
enhanced in the later stages at τ = 7.2, as shown in figure 3(c). At the same time,
the density fluctuations in the particle clusters are amplified till τ = 7.2, where the
integration is terminated. Since the highest initial solid fraction is about 0.62, the
entire evolution of the SDW1 mode does not take a long time.

The above-mentioned perturbations are superimposed on the base state (uniform in
the x-direction; non-uniform in the y-direction) for the purpose of better illustration
of the density field. These are displayed in figure 3(d–i). With the increment of time
from τ = 0+ to 3.0 (figures 3d to 3f), the density field becomes much more complicated
with a non-uniform periodic structure in the flow direction. When τ = 4.5 (figure 3g)
the density field starts to develop in a different fashion. The original continuous
concentrated regions begin to split (figures 3h and 3i). As a result, the density field
becomes more and more discrete in the flow direction and in certain regions the
concentrated clusters are stretched towards the bounding plates. This trend continues
till the end of transient integration (τ = 7.2) where the value of ν in certain regions
eventually reaches νm(0.65). In this regime, the contribution of friction becomes much
more important than collision and hence the basic assumption used in the present
study (collision model) fails and no further meaningful conclusions can be drawn.

The interaction between ν and v can be investigated by showing both fields on the
same plot as in figures 4(a) and 4(b) for τ = 0+ and 7.2, respectively. At τ = 0+, both
density and velocity fields do not deviate much from the base state. When τ = 7.2, the
deviation of velocity from a uni-directional flow field becomes more significant. The
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Figure 3. Temporal evolution for the SDW1 mode: ν ′ at (a) τ = 0+, (b) τ = 3.0, (c) τ = 7.2;
and ν at (d) τ = 0, (e) τ = 1.5, (f) τ = 3.0, (g) τ = 4.5, (h) τ = 5.3 and (i) τ = 7.2.

particles around the dense regions have a tendency to drift towards the two bounding
plates.

The FFT analysis is also useful to examine the SDW1 mode in order to get a
quantitative understanding of the transient flow. The surface plots of the power
spectrum density, P , of ν ′ for the SDW1 mode with the sequence of time are shown
in figure 5(a–f). When τ = 0+ (figure 5a), there is only one dominant peak existing in
the wavenumber domain, which is labelled peak A. It has a preferred x-wavenumber
of fx = 1 and y-wavenumber of fy = 0. The x-wavenumber fx = 1 because the
computational length in the flow direction just covers one period of the density wave.
On the other hand, the dominant peak has a y-wavenumber of fy = 0 which indicates
that the periodicity attributed in the transverse direction is quite minor in comparison
with that in the flow direction. Due to the view angle, the peak A seems to appear
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Figure 5. Surface plots of the power spectrum density, P , for the SDW1 mode:
(a) τ = 0+, (b) τ = 1.5, (c) τ = 3.0, (d) τ = 4.5, (e) τ = 5.3 (f) τ = 7.2.

at a small positive number on the surface plot. This is because only half of the
dominant peak is shown, owing to the symmetry around fy = 0. From τ = 0+ to 3.0
(figures 5a to 5c), there is no significant change in the wavenumber domain except the
increase of P for peak A. Concurrently, there are a few other smaller peaks scattered
around the plot. At τ = 3.0 (figure 5c), a new phenomenon can be seen. Another peak
labelled B appears with an x-wavenumber of 2 and with a y-wavenumber of 0. This
corresponds to the time when the smooth density wave begins to split in the flow
direction (figure 3f). With further increment in time, peak B becomes more and more
significant. At τ = 4.5 (figure 5d), one more peak appears at the location (3, 0). This
is labelled peak C. These three preferred peaks co-exist and amplify with increasing
time in the underlying mean flow. The dominant peak A amplifies throughout the
transient integration, indicating that the density field is moving further away from
the base state.
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Figure 6. Temporal growth of the peaks A, B and C: (a) Power spectrum density, P , (b) evolution
of the SDW1 mode: plot of ln(P/PE0) against τ for the most dominant peak.

As shown in figures 3 and 5, the patterns developed are harmonic distortions of the
main waveform (fx = 1). The choice of the smaller x-scale relative to the y-scale in
figure 3 is to show the fine structure of the density wave which would not be visible if
the x- and y-scales were chosen to be the same. Higher wavenumber modes (fx = 2
and 3) can be captured by figure 5 in which the power of higher harmonic modes
is shown. Only the regime 0 < fx < 4 is shown because the power of the higher
wavenumber modes is much weaker than the first few harmonic modes.

The power spectrum density, P , for the three peaks A, B and C is shown in
figure 6(a). It is clear from this figure that the peak A dominates throughout the
computation, peak B appears in a subsequent stage and peak C appears last. These
peaks amplify with time, which makes both the spectral attributes and the spatial
distribution of the density wave more and more complicated. Peak A grows in
accordance with the linear stability theory except at the end of transient integration.
The growth rates of B and C are several orders higher than that of A, resulting in
the density wave splitting in the later stages. Since A is the most dominant peak
throughout the computation, attention has been paid to understand its development.
Figure 6(b) shows ln(P/PE0) plotted against τ (PE0 refers to the P value of the
dominant mode at τ = 0+). It is seen that the slope generally remains constant except
near the end of transient integration, thus indicating that the development of the
SDW1 mode is primarily governed by the linear instability.

The initial growth rate and the phase velocity of the SDW1 mode have been com-
pared using FFT, eigenvalue and TNEK (Time-dependent Nekton Viewer) analyses.
The corresponding characteristic values are summarized in table 2. From the table,
it can be noted that the Ωr value obtained from FFT analysis is very close to that
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Method Growth rate (Ωr) Phase velocity (−Ωi/Kx)

Eigenvalue analysis 0.076 1.579
Power spectra 0.078
TNEK 1.391

Table 2. Initial characteristic values of the SDW1 mode.

of eigenvalue analysis. The phase velocities predicted from the eigenvalue analysis by
Wang (1995) and from the present study are 1.287 and 1.579, respectively. This is
cross-checked by TNEK analysis (Lunt 1992), from which the SDW1 mode is found
to travel with an initial phase velocity of 1.391 in the flow direction.

5. Symmetric density wave type 2 (SDW2)
At (ν̄, ∆/d) = (0.15, 33.3), the dominant eigenfunction has a symmetric pattern

in the density field with a single alternating cluster and void (transverse direction)
aligning exactly along the centreline of the channel, and is therefore referred to as the
symmetric density wave type 2 (SDW2, figure 7a), as reported in Wang et al. (1997).
The base-state solutions for the adiabatic wall condition are similar to the case of
(ν̄, ∆/d) = (0.15, 33.3) shown in figure 2.

In order to investigate the temporal evolution of the density perturbation, the spatial
distribution of ν with time is shown in figure 7(a–g). Two computational cells in the
x-direction are shown to elucidate the periodicity in the flow direction. The level of
solid concentration can be identified with the change in the colour. Figures 7(a)–7(c)
show the plots of ν ′, while the plots of ν are shown in figures 7(d)–7(g). When τ = 0+,
a small increment in the SDW2 mode perturbation (figure 7a) causes non-uniformity
in the flow direction (figure 7d). This is shown by alternating dense clusters and voids
aligning along the centreline. The density wave is symmetric about the centreline, in
accordance with the symmetric eigenfunction. When τ = 53 (figure 7e), the shape of
the density wave changes significantly. The dense regions and void branches have
expanded towards the two bounding plates and in the flow direction, respectively.

With the further increase of time beyond τ = 227, a new phenomenon starts to
develop as shown in figures 7(f) and 7(g). The void branches begin to split in the flow
direction. The original smooth surface changes into a new terrace-like one. This trend
is continued in the subsequent time steps. After stepping into a period of stagnation,
ν ′ starts to reshuffle and amplifies rapidly again. At τ = 378 (figure 7g), the discrete
dense clusters and voids are developed in the flow direction while all regions are
divided into small segments. This trend holds in the subsequent stages until the
end of the transient integration at τ = 801, where some densely packed clusters are
formed (solid fraction = 0.65). The transient integration is terminated there, because
the physical limit of the model’s assumption has been reached and hence no further
conclusions should be drawn. Figures 8(a) and 8(b) illustrate the interaction of the
velocity and density fields at τ = 0+ and 378, respectively. At τ = 0+ (figure 8a),
the velocity field does not deviate much from the base state; on the other hand, at
τ = 378 (figure 8b), the particles around the dense regions show more obvious lateral
movement towards the two bounding plates.

One interesting new finding for the SDW2 mode is the splitting of large particle
clusters into smaller ones during the transient development of the flow field. In order to
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and ν at (d) τ = 0+, (e) τ = 53, (f) τ = 227 and (g) τ = 378.

quantify this phenomenon, the fast Fourier transform (FFT) is used. The surface plots
of the power spectrum density, P , of ν ′ at a sequence of times are shown in figure 9.
When τ = 0+ (figure 9a), there are two peaks existing in the wavenumber domain. The
dominant peak (labelled A) has a wavenumber coordinate of (fx, fy) = (1, 0), whilst
the other peak is labelled B, with a coordinate of (1, 1). It is understandable that
both peaks have an x-wavenumber of 1 because the length of the computational cell
just covers one period of the density wave in the flow direction. The y-wavenumbers
for the peaks are determined by the intrinsic transverse structure of the density wave.
It is obvious that peak B is much weaker than peak A in magnitude, which shows
that the periodicity of the density wave in the transverse direction is much weaker
than the one in the flow direction. By τ = 53 (figure 9b), another peak appears at
(2, 0), and is labelled C. This implies that the original periodic wave is evolving
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Method Growth rate (Ωr) Phase velocity (−Ωi/Kx)

Eigenvalue analysis 0.092 6.495
Power spectra 0.092
TNEK 7.273

Table 3. Initial characteristic values of the SDW2 mode.
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into a combination of two harmonic waves in the flow direction. The characteristic
feature of the density wave does not change much from τ = 53 to 227 (figures 9b to
9c), showing that the density wave reaches a stage of retarded growth as explained
earlier. At τ = 302 (figure 9d), a new peak D (location (9, 0)) is greatly amplified. This
seems to correspond very well with the fact that the large particle clusters gradually
degenerate into nine smaller ones in the flow direction, due to the nonlinearity of the
governing equations.
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The evolution of peaks A, B, C and D is investigated in order to get a quantitative
understanding of the temporal development of the SDW2 mode. The power spectrum
density, P , for A, B and C is shown in figure 10(a). It is observed that the P value of
peak A increases rapidly at the beginning and then moves into a phase of retarded
growth till τ = 480. After that, A has another period of abrupt amplification in the
strength of power spectra till τ = 620. Compared with the P value of A, both B and
C are minor and do not amplify much after the onset of perturbation.

The envelope of ln(P/PE0) of the most dominant peak against τ is shown in
figure 10(b). The asymptote branches in the curve actually correspond to the peaks A
and D, respectively. The initial behaviour of the density wave is represented primarily
by A. The density wave mainly keeps one periodic wave in the flow direction during
this period. Peak D grows rapidly at about τ = 430. At later stages, the power
spectra of D have a dominant value, several orders of magnitude higher than A. In
figure 10(b), the overtaking of peak A by peak D is illustrated. In the density plot,
this corresponds to the degeneration of large particle clusters into a series of smaller
ones.

In summary, the temporal development of the SDW2 mode could be classified
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into the following stages: developing with the linear instability in the initial period;
then moving into a stage of retarded growth; and finally embarking on the second
phase of rapid growth till the end of integration. After the detailed discussion on the
temporal evolution of the SDW2 mode, more insight is given to the two characteristic
values, Ωr and −Ωi/Kx, calculated by FFT, eigenvalue and TNEK analyses. It is
seen from table 3 that the measured value of Ωr from FFT analysis is very close to
the corresponding value by eigenvalue analysis. The dimensionless phase velocities
predicted by Wang (1995) and the present study are 6.471 and 6.495, respectively.
These also agree reasonably well with the TNEK visualization results showing that the
SDW2 mode has a phase velocity of 7.273 in the initial period. After the overtaking
of peak A by peak D, the phase velocity varies slightly throughout the transient
integration.

6. Anti-symmetric density wave (ASDW)
At (ν̄, ∆/d)=(0.15, 66.6), it is found that the eigenfunction has another type of

pattern in the density field with two anti-symmetric alternating particle clusters and
voids aligning beside the centreline. Wang et al. (1997) referred this mode as ASDW.
The base-state solutions for u0, ν0 and T0 are shown in figures 2(a), 2(b) and 2(c),
respectively.

In the present investigation the temporal evolution of ν ′ for the ASDW mode is
studied. The spatial distribution of ν ′ at selected time steps is shown in figures 11(a)
to 11(i). In the initial period, ν ′ shows a uniform blue colour in most of the flow field
except for two small anti-symmetric alternating clusters, as shown in figure 11(a). It
is found that for the ASDW mode ν ′ is initiated around the centreline of the channel.
As shown in figures 11(b) to 11(d), ν ′ amplifies rapidly with time from τ = 0.7 to
τ = 1.4. The particle clusters and voids are greatly intensified in magnitude and
expanded. The anti-symmetric pattern develops in such a way that the void regions
shift towards the centreline whilst the dense clusters move towards the two bounding
plates. As a result, ν ′ changes to another new pattern with a line of void regions along
the centreline, accompanied by two lines of alternating dense clusters (figure 11e).
In the subsequent stages of computation, ν ′ does not change much either in pattern
or intensity as shown in figures 11(f) to 11(i) (from τ = 2.2 to 13.7). However, the
flow continues with further redistribution of particles, although the slow evolution is
evident.

The spatial distribution of the density wave for the ASDW mode is shown in
figures 12(a) to 12(i). When τ = 0+ (figure 12a), the density wave does not deviate
much from the base state. From τ = 0.7 to 1.9 (figures 12b to 12e), the density pattern
changes significantly. The dense stripes at the centreline changed from relatively
straight lines into a ‘Z’ shape. In the subsequent stages till the end, the ASDW mode
steps towards the phase of retarded growth as no further significant changes occur
in figures 12(f) to 12(i). The tracking of temporal evolution of the ASDW mode is
terminated while some void regions remain empty.

The interaction between the velocity and density fields is investigated by super-
imposing them on the same plot as shown in figures 13(a) and 13(b) for τ = 0+

and 13.7, respectively. As expected, when τ = 0+, v does not deviate from the base
state (one-dimensional flow). When τ = 1.9 (data not shown), the deviation from the
uni-directional flow field becomes quite significant and this results in a ‘Z’-shaped
stream in the flow direction. This phenomenon is further enhanced in subsequent
stages as shown in figure 13(b) for τ = 13.7.
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The FFT analysis is also carried out to examine the ASDW mode. The surface plots
of power spectrum density, P , at a sequence of times are shown in figure 14. When
τ = 0+, all the preferred spectral peaks appear at fx = 1 because of the periodicity in
the x-direction. The computational length in the flow direction is chosen just to cover
one period of the ASDW mode. These peaks (labelled A, B, C, D and E) have the
characteristic y-wavenumbers shown in figure 14(a). It is found that peaks A, B, C, D
and E have the preferred y-wavenumbers 1, 2, 3, 4 and 5, respectively, indicating that
ν ′ is a combination of five major harmonic modes in the transverse direction. This
unique spectral attribute distinguishes the ASDW mode from those of the SDW1 and
SDW2 modes. In other words, the ASDW mode disturbs the granular flow primarily
in the transverse direction rather than in the flow direction, which is characterized by
the ‘Z’-shaped dense stripes in the density field as discussed earlier. The amplitudes of
the peaks A, B, C, D and E amplify rapidly with time. At τ = 0.7 (figure 14c), a new
series of preferred peaks appears at the x-wavenumber of 0. This newly developed
series is comparable in magnitude with the original series, when τ = 1.4 (figure 14b).
This figure provides clear visualization of the new series of peaks in the wavenumber
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domain. There are also five peaks aligning at x-wavenumber = 0 with characteristic
y-wavenumbers of 1, 2, 3, 4 and 5, respectively. They are correspondingly labelled A′,
B′, C′, D′ and E′. With the further increment of time (figures 14e to 14f), the new
series of peaks overtakes the original one. This is an important signal showing that
the ASDW mode gradually loses its original periodicity in the flow direction.

The evolution of the preferred peaks of the ASDW mode is also investigated in
the present study. Figure 15(a) shows the temporal evolution of A, B, C, D and E. It
is found that they are all amplified in the initial period of the transient integration.
At a later stage, only peak A maintains a significant value of P whilst others become
minor compared to A. Figure 15(b) shows the temporal evolution of the peaks A′, B′,
C′, D′ and E′. Apparently A′, B′, C′ rise rapidly in the initial period, and become the
most important peaks of the ASDW mode at later stages. The comparison between
peaks A and B′ (figures 15a and 15b), the most dominant peaks of the two series,
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Method Growth rate (Ωr) Phase velocity (−Ωi/Kx)

Eigenvalue analysis 1.860 9.569
Power spectra 1.925
TNEK 9.693

Table 4. Initial characteristic values of the ASDW mode.

shows that peak B′ overtakes peak A at around τ = 1.4. This is a critical point for
the ASDW mode as it designates the loss of periodicity in the flow direction.

For the first series, all the five peaks grow rapidly with about the same growth
rate. Subsequently, peak A seems to move to a steady state and the others start to
decrease drastically. The development of peaks A′, B′, C′, D′ and E′ is also governed
by the linear instability in the initial period. From around τ = 1.9 onwards, their
development gradually slows down. This is reflected in the temporal evolution of the
density field as already discussed whereas its pattern and intensity do not change much
from τ = 1.9 to 13.7. The envelope of ln(P/PE0) against τ for the most dominant peak
of the ASDW mode is shown in figure 15(c). It is seen that the ASDW mode grows
rapidly in the initial period, in accordance with the linear stability theory, and later
it enters into a relatively slow evolving state until some void regions become empty.

The characteristic values of Ωr and −Ωi/Kx calculated by different methods are
tabulated in table 4. It is obvious that Ωr of the initial period obtained through the
power spectrum analysis (Ωr = 1.925) is again very close to that by the eigenvalue
method. The initial phase velocity predicted by the present study (−Ωi/Kx = 9.569) is
quite consistent with that obtained by Wang (1995), −Ωi/Kx = 9.855. The independent
TNEK analysis affirms that the ASDW mode travels with an initial phase velocity
of 9.693 in the initial period. With the development of the ASDW mode, the phase
velocity gradually slows down to 5.816 before the end of transient integration. In
other words, the phase velocity is reduced by 40% during the transient development!

7. Comparison among the SDW1, SDW2 and ASDW modes
The growth rates evaluated through the power spectrum analysis in the initial

period for all three modes are compared. It is clear that the SDW1 and SDW2
modes develop with initial growth rate in the order of 0.01 to 0.1, which is more
than two orders of magnitude smaller than that of the ASDW mode. The short-
term and long-term behaviours of these three modes are also quite different. The
SDW2 mode shows a complicated behaviour throughout the period. It first grows in
accordance with the linear stability theory and then quickly moves into a phase of
retarded growth. When τ = 435, it embarks on the second phase of abrupt growth
till the end of computation. In contrast, for the SDW1 mode, the evolution is much
more straightforward. The temporal development of the SDW1 mode is primarily
governed by the linear instability except near the end of the transient integration.
There are two stages of development for the ASDW mode. In the initial period it
rises rapidly in accordance with the linear instability, and soon it enters into a stage
of retarded growth until some void regions become empty. The long-term behaviours
of the phase velocity (−Ωi/Kx) for the SDW1, SDW2 and ASDW modes are also
different. The SDW1 and SDW2 modes maintain their phase velocity within ±10%
of the original value throughout the transient integration, in contrast to the ASDW
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mode in which the velocity slows down by 40% from the onset of perturbation to the
end of integration.

The spectral attributes of ν ′ for the SDW1, SDW2 and ASDW modes are charac-
terized by their own sets of harmonic modes. For the SDW1 and SDW2 modes, ν ′
primarily comprises a series of harmonic modes in the flow direction. In contrast, for
the ASDW mode, ν ′ primarily comprises a series of harmonic modes in the transverse
direction, indicating that its evolution is governed by transverse development.

8. Mechanism of instabilities
The mechanisms of instabilities are examined by a term-by-term analysis of the

governing equations. This is significantly different from the analysis of the physical
mechanism of the pattern formation. The latter approach has been extensively re-
ported in the literature, better known as the particle dynamics simulation (Lee 1994;
Lee & Leibig 1994; Peng & Herrmann 1994, 1995).

As discussed in the previous sections, a passive (adiabatic) wall may still trigger
complicated density waves without the rough-wall condition. When an adiabatic-wall
condition is applied, three modes of characteristic density waves exist. This signifies
that the wall roughness is not the necessary condition for the emergence of instabilities
as long as the particle–particle collisions are inelastic. This appears to be different
from the findings of Peng & Herrmann (1994), which showed that both the wall
roughness and inter-particle collisions are necessary conditions for triggering density
waves in gravity pipe flows of granular materials.

When the walls act as either sink or source of pseudo-thermal energy, the wall may
interact with the flow field and thereby modifies the structure of density waves. Two
issues remain to be answered in this study. First, the mechanism of the instabilities
reported in earlier sections and secondly, the alteration of density wave structure
when the boundary condition is changed form an ‘adiabatic’ to a ‘sink wall’. The first
point is studied by adding two empirical coefficients α and β to the momentum and
energy equations, respectively:

αρ
Du

Dt
= −∇ · σ + ρg, (12a)

β
3

2
ρ

DT

Dt
= −∇ · q − σ:∇u− J, (12b)

where ρ = ρsν. The parameters α and β are then varied and the real and imaginary
parts of the eigenvalue of the dominant mode, Ω, along with its corresponding
dimensionless wavenumber, Kx are calculated. The most dominant growth rate and
phase velocity for the specified values of α and β can be found from these calculated
values. To examine the second point regarding the effect of boundary conditions, the
value of parameters used in this section are the same as in table 1 except that a
‘sink-wall’ boundary condition is used instead (ew = 0.5, ϕ′ = 0.6).

In order to study the mechanism, the growth rate and the phase velocity are
plotted against the parameters α and β, respectively. In addition, to examine the
structure of instabilities, the most dominant eigenfunctions of the fluctuations in solid
concentration are also shown at specified values of α, known as density plots.

Figure 16(a) shows the dimensionless growth rate, Ωr , and the phase velocity
(−Ωi/Kx), plotted against α for the SDW2 mode. As the α value decreases from 1
(full inertial effect), the growth rate also decreases. The growth rate changes from
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Figure 16. Effect of α on the stability of flow for the SDW2 mode at the point (ν̄, ∆/d) = (0.15, 33.3),
(ew, ϕ

′) = (0.5, 0.6). (a) Growth rate (Ωr) and phase velocity (−Ωi/Kx) vs α. (b) Dominant travel-
ling-wave mode eigenfunction at α = 1.0, (c) α = 0.7. The left- and right-hand axes refer to Ωr and
−Ωi/Kx, respectively.

a positive value to a negative one (that is, the flow becomes stable) if the inertial
effect is reduced below 0.6. This mathematical solution seems to support the idea
that SDW2 is triggered partially by momentum inertia. The stability characteristics
of the flow change at a critical value of αcrit = 0.58, accompanied by the crossing of
one branch to another. Hence, the momentum inertia destabilizes the gravity-driven
granular flow. In the phase velocity curve, the velocity increases as α is decreased.
Similarly, there is a discontinuity in the phase velocity at αcrit = 0.58 due to a change
in the dominant branch. The value of the phase velocity remains ‘positive’ indicating
that the flow direction of the density wave is the same as the flow of particles.

Figures 16(b) and 16(c) show the most dominant solid concentration density at
α = 1.0 and α = 0.7 respectively. With reference to the schematic diagram of figure 1,
these figures are orientated in such a way that gravity is acting along the x-axis. The
darker regions indicate higher solid concentration while the lighter regions indicate
lower solid concentration. Figures 16(b) and 16(c) have a similar pattern (opposite
phase, recalling that any constant – either positive or negative – multiple of an
eigenfunction is still an eigenfunction of the original physical problem), indicating
that points (b) and (c) in figure 16(a) are on the same eigenfunction branch. Similar
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calculations have been carried out for β and the results show that it has an opposite
effect on the momentum inertia. The growth rate increases as β decreases and the
mode remains unstable without any changes in the dominant branch. The phase
velocity remains positive, but decreases as the value of β decreases (data not shown).

The momentum inertia has a similar effect on the SDW1 mode as shown in
figure 17. The growth rate, Ωr , decreases as α is decreased and a stable mode is
attained at αcrit = 0.27. Similar to the SDW2 mode, a crossing of branches is also
observed here. The difference in the effect of α on the SDW1 and SDW2 modes is that
in the SDW1 mode, the phase velocity decreases as α decreases and the negative phase
velocity is obtained at α 6 0.4. Hence, the momentum inertia reduces the stability of
the granular flow.

The effects of α on the ASDW mode are also examined. The results shown in
figure 18 indicate that the momentum inertia also destabilizes the flow. The crossing
of the dominant branches occur at two places. The first crossing is at α = 0.33 and
the second one is the crossing of an unstable mode to a stable one at αcrit = 0.01. A
similar trend is also observed in the phase velocity curve. Crossings of the dominant
branches are observed at α = 0.33 and αcrit = 0.01. The phase velocity of the ASDW
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(ew, ϕ

′) = (0.5, 0.6). (a) Growth rate (Ωr) and phase velocity (−Ωi/Kx) vs α. (b) Dominant travel-
ling-wave mode eigenfunction at α = 1.0, (c) α = 0.5. A legend is inserted to clarify the line styles
associated with the growth rates for the two branches (denoted as branches 1 and 2, respectively,
left-hand axis). The phase velocity (−Ωi/Kx) is the dashed line shown by a right-hand arrow.

mode is found to be greater than that of the SDW modes. The solid concentration
distributions in the figures 18(b) and 18(c) appear slightly different but the basic
pattern is similar.

The density eigenfunction comparisons among figures 16(b), 17(b) and 18(b) with
those of figures 3(a), 7(a) and 11(a) show that the nature of the dominant modes
does not change significantly with the variation of boundary conditions. However,
this does not exclude the possibility that the temporal evolution of different modes
may be affected by the variation of the wall condition: this problem remained to be
investigated in our future studies.

9. Comparison with previous studies
9.1. Numerical studies

The theoretical works of Peng & Herrmann (1994, 1995) are largely based on a lattice-
gas automata (LGA) model in which probabilistic collision rules for particle collisions
are proposed and the resulting particle distributions are tracked. These differ from the
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present study in which model continuum constitutive relations for granular materials
are employed in the conservation equations of mass, momentum, and energy. Peng
& Herrmann (1994, 1995) presented their results in terms of the time evolution of
the density field, highlighting the variation along the pipe for various probabilistic
collision parameters. At a fixed value of gravitational acceleration, these LGA models
predict nearly constant phase velocities for various bed densities. Furthermore, the
LGA models do not differentiate between the particle and phase velocities. This seems
to be in direct contrast with the findings of the present study in which the phase
velocity (−Ωi/Kx) of the density waves varies significantly with the gap width (∆/d)
and solid fraction (ν). For instance, the phase velocity of the ASDW, ((∆/d, ν) = (66.6,
0.15)) is nearly six times and 33% larger than the SDW1 mode ((∆/d, ν) = (33.3,
0.15)) and SDW2 mode ((∆/d, ν) = (33.3, 0.4)), respectively. While the phase velocity
can be different from the average velocity of the granular assembly, its value can
also vary with time by more than 40% according to the transient integration results
indicated elsewhere in this work.

9.2. Experimental studies

Savage (1979) observed a flat particle velocity profile in the centre of a vertical
channel and significant shear near the walls. These profiles seem to be similar to
the base-state profiles shown in figure 2. The diameter ratio of pipe to particle
employed in Nakaharan & Isoda (1997) is in general less than 10, much smaller than
the corresponding values in the present work (greater than 33). It is not surprising
to see that the flow patterns predicted in the present study have more significant
lateral structure than the one-dimensional structure observed in Nakaharan & Isoda
(1997). In contrast, the simulations of the present work can be better compared with
the complicated two-dimensional density wave observed in Horikawa et al. (1996),
Aider et al. (1999) and Hua & Wang (1999) owing to their much closer pipe/particle
diameter ratio (their values are roughly in the range 10–30).

Using a digital charge coupled device camera, Aider et al. (1999) observed prop-
agative and oscillating waves in an intermediate mass-flow-rate regime where high-
compactness ‘clogs’ are separated by low-density ‘bubbles’. These clogs have a char-
acteristic wavelength in the order of 1 cm, in contrast to the equivalent wavelength of
the ASDW (1.6 cm), SDW1 (41 cm) and SDW2 (14 cm) in the present study for similar
sizes of pipes and particles, but different particle concentration and flow geometry.
Hua & Wang (1999) employed electrical capacitance tomography to investigate the
density wave formation for two different types of particles in a vertical pipe. They ob-
served the temporal variation of particle distribution by a series of snapshots taken at
a cut section of the pipe. The resulting images illustrate the spatiotemporal variations
of the density wave corresponding to the side views of the particle concentration
contours shown in figure 3, 7 and 12 of the present work.

10. Conclusions
This paper contains the first integration of a set of continuum equations for a

rapid flow of a granular material in both space and time. By comparing the model
predictions with previous studies in the literature, the present work also provides an
indirect way to examine the validity of the constitutive relations commonly employed
in the grain kinetic theory. The findings of this work support the idea that complicated
density wave patterns can be caused by the collisions between particles even in the
absence of an interstitial fluid.
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The initial development of three types of travelling density waves in the gravity-
driven, flow, namely SDW1, SDW2 and ASDW modes, is triggered by linear insta-
bility. Significant nonlinear development is observed in the ASDW mode at the later
stages of the transient integration. FFT and power spectrum analyses are able to
capture the temporal evolution of the density waves. The preferred intrinsic modes
are filtered out effectively by the FFT analysis and can be used to characterize the
gravity-driven flow.

The findings of the present study also indicate that wall roughness may contribute
to and modify the patterns but may not be the necessary condition for triggering
the density waves in gravity channel flow. All three modes of instabilities reported in
this work are of inertial origin and occur when the collisions between particles are
inelastic.
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Sankaran Sundaresan of Princeton University for their comments on the project.
Both authors would like to thank the Institute of High Performance Computing
(Singapore) and Silicon Graphics Inc. for the usage of supercomputing facilities, and
Loke Keat Thong for his technical support.

Appendix. Numerical methods used in the eigenvalue and transient analyses
A basic computational unit cell consists of an m× m grid of rectangular cells.

Two consecutive cells are shown in figures 3, 4, 7, 8, 11, 12, and 13 to indicate the
periodicity in the x-direction. The finite-element equations of (1) to (3) are

A · ẏ + f(y) = 0, (A 1)

A =

 A1 0 0 0
0 A2 0 0
0 0 A3 0
0 0 0 A4

 , (A 2)

y =

 y1

y2

y3

y4

 , f =

 f1

f2

f3

f4

 , (A 3), (A 4)

where A and f with subscripts 1, 2, 3, and 4 refer to the terms of the continuity
equation (1), x-momentum equation (2), y-momentum equation (3), and the energy
balance equation (4), respectively. The components y1–y4 of vector y represents the
volume fraction, x- and y-velocity components, and granular temperature, respectively.
The expressions for A and f involve a variety of integrals of basis functions and
integrals of products of basis function and variables. The basis functions are chosen
to be biquadratic functions of the coordinates. The integrals are evaluated by the
summation over Gaussian quadrature points (4 × 4) while the transient values of
variables u, v, ν and T are evaluated on the regular grid points (3× 3) for each mesh.
The elements and variables used in this study are:

number of elements = m2,
number of variables for ν = 2m(2m+ 1),
number of variables for u(v orT ) = 2m(2m− 1),
total number of variables (y): 2m(2m+ 1) + 6m(2m− 1).
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Because the periodicity occurs only in the x-direction, there are 2m nodal points in
the x-direction while there are 2m + 1 nodal points in the y-direction. The product
of these two numbers gives the number of variables for ν to be 2m(2m + 1). The
values of u, v, and T on the boundaries located at Y = ±0.5 are easily written down
explicitly in terms of interior variables, leaving fewer unknowns.

In order to examine the stability of a base state, f(y) in (A 1) is linearized around
its base state y′0.

f(y) = J0(y − y0), f(y0) = 0, (A 5)

where J0 = (∂f/∂y)y0 is the numerical Jacobian.
Denoting ŷ ≡ y − y0, we have ẏ ≡ ˙̂y and equation (A 1) becomes

A(y0)
˙̂y = −J0ŷ. (A 6)

We then consider a perturbation of the following form:

ŷ = Ψeλt (A 7)

Substituting equation (A 7) into equation (A 5) and rearranging we obtain

A(y0)λΨ = −J0Ψ. (A 8)

The generalized eigenvalue problem is solved by lapack routine ‘rgg’. The eigenvalues
and the corresponding eigenvectors are recorded. A small fraction (< 5%) of the
least-stable eigenvector is then added to the base-state solution to generate the initial
condition for a time-dependent problem of the full nonlinear equation (A 1). The
solution is integrated forwarded in the time domain. In order to carry out the
numerical integration, equation (A 1) is approximated by

An · yn+1 = An · yn − ∆t · f(yn) = f̂(yn). (A 9)

Equation (A 9) has the form A · X = B[B ⇒ f̂(yn)]. The superscripts n and n + 1
denote the time steps at which the numerical integration is carried out. This is solved
by lapack routines ‘dgetrf’ and ‘dgetrs’: ‘dgetrf’ computes the LU factorization of a
general (16m2 − 4m)× (16m2 − 4m) matrix using partial pivoting with row exchange,
while ‘dgetrs’ solves a system of linear equations using the LU factorization computed
from ‘dgetrf’.

The spatial and temporal resolution has been examined by varying the time step and
grid size respectively to ensure the convergence falling within ±0.01%. The finite-
element formulation involves a rectangular grid mesh solved by various standard
mathematical software packages. Taking the mesh refinement test of the ASDW
(anti-symmetric density wave) mode as an example, we have examined the 25 × 25
mesh points (with a 2256 × 2256 matrix equation) and 19× 19 mesh points (with a
1260× 1260 matrix equation) in a computational unit cell (the domain displayed in
figure 12 covers two unit cells in the x-direction). Furthermore, the time steps (∆τ)
of 0.000125 and 0.00025 have been verified, subjected to the same criterion indicated
above.

REFERENCES

Aider, J.-L., Sommier, N., Raafat, T. & Hulin, J.-P. 1999 Experimental study of a granular flow
in a vertical pipe: A spatiotemporal analysis. Phys. Rev. E 59, 778–786.

Astarita, G. & Ocone, R. 1994 Large-scale statistical thermodynamics and wave-propagation in
granular flow. Ind. Engng Chem. Res. 33, 2280–2287.



246 C.-H. Wang and Z. Tong
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